Coleman’s L-invariant and Families of Modular Forms

نویسندگان

  • GLENN STEVENS
  • Jeremy Teitelbaum
چکیده

Let p be a prime > 2 and N be a positive integer with p 6 |N . Let f be a classical newform over Γ0(Np) of even weight k0 + 2 ≥ 2 and assume f is split multiplicative at p, thus ap(f) = p0 where ap(f) is the eigenvalue of the U -operator at p acting on f . Under these hypotheses, Coleman [3] defined an L-invariant L(f) which he conjectured to be equal to the higher weight Mazur-TateTeitelbaum L-invariant [16]. In this paper we will prove Coleman’s conjecture. More precisely, let X := Z/(p− 1)Z×Zp with Z embedded in X diagonally and let Lp(f,−) : X −→ Cp be the p-adic L-function attached to f as in [16]. We will prove the following theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE HALF-INTEGRAL WEIGHT EIGENCURVE by

— In this paper we define Banach spaces of overconvergent half-integral weight p-adic modular forms and Banach modules of families of overconvergent halfintegral weight p-adic modular forms over admissible open subsets of weight space. Both spaces are equipped with a continuous Hecke action for which Up2 is moreover compact. The modules of families of forms are used to construct an eigencurve p...

متن کامل

A theta operator on Picard modular forms modulo an inert prime

(an 2 1 Fp) of such a form, μ is given by qd=dq: It lifts, by the same formula, to the space of p-adic modular forms. This suggests a relation with the Tate twist of the mod p Galois representation attached to f; if the latter is a Hecke eigenform. Over C; this operator has been considered already by Ramanujan, where it fails to preserve modularity “by a multiple of E2": Maass modi...ed it so t...

متن کامل

ar X iv : 0 90 6 . 32 49 v 1 [ m at h . N T ] 1 7 Ju n 20 09 THE HALF - INTEGRAL WEIGHT EIGENCURVE

— In this paper we define Banach spaces of overconvergent half-integral weight p-adic modular forms and Banach modules of families of overconvergent halfintegral weight p-adic modular forms over admissible open subsets of weight space. Both spaces are equipped with a continuous Hecke action for which U p2 is moreover compact. The modules of families of forms are used to construct an eigencurve ...

متن کامل

Local to Global Compatibility on the Eigencurve

We generalise Coleman’s construction of Hecke operators to define an action of GL2(Ql) on the space of finite slope overconvergent p-adic modular forms (l 6= p). In this way we associate to any Cp-valued point on the tame level N Coleman-Mazur eigencurve an admissible smooth representation of GL2(Ql) extending the classical construction. Using the Galois theoretic interpretation of the eigencur...

متن کامل

P-adic Family of Half-integral Weight Modular Forms and Overconvergent Shintani Lifting

Abstract. The goal of this paper is to construct the p-adic analytic family of overconvergent half-integral weight modular forms using Hecke-equivariant overconvergent Shintani lifting. The classical Shintani map(see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. Glenn Stevens proved in [St1] that there is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005